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Sounding Theory Notes for the 
discussion today is on-line

voice: (301)-316-5011               email: chris.barnet@noaa.gov
ftp site: ftp://ftp.orbit.nesdis.noaa.gov/pub/smcd/spb/cbarnet/
..or..   ftp ftp.orbit.nesdis.noaa.gov, cd pub/smcd/spb/cbarnet
Sounding NOTES, used in teaching UMBC PHYS-741: Remote Sounding 
and UMBC PHYS-640: Computational Physics (w/section on Apodization)

~/reference/rs_notes.pdf

~/reference/phys640_s04.pdf
These are living notes, or maybe a scrapbook – they are not textbooks.

For an excellent text book on the topic of remote sounding is:

Rodgers, C.D. 2000.  Inverse methods for atmospheric 
sounding: Theory and practice.  World Scientific Publishing 
238 pgs
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Acronyms
• Other

– CALIPSO = Cloud-Aerosol Lidar and Infrared 
Pathfinder Satellite Observations

– EUMETSAT = EUropean organization for 
exploitation of METeorological SATellites

– GOES = Geostationary Environmental 
Operational Satellite

– IGCO = International Global Carbon Observation 
(theme within IGOS)

– IGOS = Integrated Global Observing System
– IPCC = Inter-government Panel on Climate 

Change 
– METOP = METeorological Observing Platform
– NESDIS = National Environmental Satellite, 

Data, and Information Service
– NPOESS = National Polar-orbiting Operational 

Environmental Satellite System
– NDE = NPOESS Data Exploitation
– NPP = NPOESS Preparatory Project
– OCO = Orbiting Carbon Observatory
– STAR = office of SaTellite Applications and 

Research

• Infrared Instruments
– AIRS = Atmospheric Infrared Sounder
– IASI = Infrared Atmospheric Sounding 

Interferometer
– CrIS = Cross-track Infrared Sounder
– HES = Hyperspectral Environmental Suite

• Microwave Instruments
– AMSU = Advanced Microwave Sounding Unit
– HSB = Humidity Sounder Brazil
– MHS = Microwave Humidity Sensor
– ATMS = Advanced Technology Microwave 

Sounder
– AMSR = Advanced Microwave Scanning 

Radiometer
• Imaging Instruments

– MODIS = MODerate resolution Imaging 
Spectroradiometer

– AVHRR = Advanced Very High Resolution 
Radiometer

– VIIRS = Visible/IR Imaging Radiometer Suite
– ABI = Advanced Baseline Imager
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Topics for Lectures

• Monday   July 23, 2007
– Introduction to AIRS & IASI and our plans to use operational sounders 

to retrieve atmospheric and surface products.
– Introduction to Sounding Methodology

• Cloud clearing
• Statistical Regression Retrievals

• Tuesday   July 24, 2007
– Sidebar: Comparison of Dispersive and Interferometric Instruments
– Introduction to Sounding Methodology (continued)

• The forward model: Converting state vector to radiances.
• The inverse problem: Converting radiances to a state vector.

• Wednesday  July 25, 2007
– Introduction to Sounding Methodology (continued)

• Vertical Averaging Kernels & Error Covariance Matrices
– Validation of Products
– Atmospheric Carbon Retrievals



55

NASA Earth Observatories



6

NOAA/NESDIS 20 year Strategy
Using Advanced Operational Sounders.

• Now: Develop and core & test trace gas algorithms using the Aqua 
(May 4, 2002) AIRS/AMSU/MODIS Instruments
– Compare products to in-situ (e.g., ESRL/GMD Aircraft, JAL, INTEX, etc.) 

to characterize error characteristics.
– The A-train complement of instruments (e.g., MODIS, AMSR, CALIPSO) 

can be used to study effects of clouds, surface emissivity, etc.
• 2007: Migrate the AIRS/AMSU/MODIS algorithm into operations 

with METOP (2006,2011,2016) IASI/AMSU/MHS/AVHRR.  
Study the impact on products due to differences between 
instruments, e.g., effects of scene and clouds on IASI’s ILS.

• 2009: Migrate the AIRS/IASI algorithm into operations for NPP 
(2009?) & NPOESS (2013?,2015?) CrIS/ATMS/VIIRS.  These are 
NOAA Unique Products  within the NOAA NDE program.
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AIRS Was Launched on the EOS 
Aqua Platform May 4, 2002

AMSU-A1(3-15)

AMSU-A2(1-2)

MODIS

AIRS

HSB

Delta II 7920
Aqua Acquires 325 Gb of data per day
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AIRS has a Unique Opportunity to Explore & Test New 
Algorithms for Future Operational Sounder Missions.

5/4/2002

≥ 11/2008

12/18/2004

7/15/2004

Apr. 28, 2006
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IASI was launched on the MetOp-A 
Satellite on Oct. 19, 2006

AMSU-A1

AMSU-A2
ASCAT

AVHRRIASI HIRS

MHS

Soyuz 2/Fregat launcher,

Baikonur, Kazakhstan
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Initial Joint Polar System: An agreement between 
NOAA & EUMETSAT to exchange data and products.

NASA/Aqua
1:30 pm orbit (May 4, 2002)

NPP & NPOESS
1:30 pm orbit (2010)

EUMETSAT/METOPEUMETSAT/METOP--AA
9:30 am orbit (Oct. 19, 2006)9:30 am orbit (Oct. 19, 2006)
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Instruments measure radiance 
(energy/time/area/steradian/frequency-interval)

This is 
what we 
measure 
and use 
the data.

This is how 
we usually 
show it.

Convert to Brightness Temperature = Temperature that the Planck 
Function is equal to measured radiance at a given frequency.



12

Thermal Sounder “Core” Products
(on 45 km footprint, unless indicated)

TBD1.0 KCloud Top Temperatures
TBD0.5 kmCloud Top Pressures
TBD5%Fractional Cloud Cover (13.5 km)
5%5%Total Precipitable Water

15%/2-km15%/2-km layerMoisture Profile
1K/1-km1K/1-km layerTemperature Profile

TBD1.0KLand Surface Temperature
0.8 K0.5 KSea Surface Temperature
< 1 K1.0KCloud Cleared IR Radiances

Current EstimateRMS RequirementGeophysical Products
(failed 2/2003)1.0-1.2 KHSB Radiance (13.5 km)

1-2 K0.25-1.2 KAMSU Radiance
10-15%20%AIRS VIS/NIR Radiance
< 0.2 %3%AIRS IR Radiance (13.5 km)

Current EstimateRMS RequirementRadiance Products
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AIRS Products
Temperature Profiles Water Vapor Profiles Clouds

Ozone CO SO2

13

Methane
Dust

CO2
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Radiances versus Products

Retrieval weights the radiances as high as 
possible, since determined state is on 
instrument sampling “grid.”

Tendency to weight the instrument radiances 
lower (due to representation error) to stabilize 
the model.   Need correlation lengths to 
stabilize model horizontally, vertically, and 
temporally.

A-priori used in retrieval is different than 
assimilation model; however, vertical kernel 
information can be used to assimilate product.

Small biases in T(p), q(p), O3(p),due to 
model/satellite representation error, have large 
impact on derived products.

Most accurate forward model is used with a 
model of detailed instrument characteristics.

Require very fast forward model, and 
derivative of forward model.

Product error covariance has vertical, spatial, 
and temporal off-diagonal terms.

Instrument error covariance is usually 
assumed to be diagonal.  For apodized
interferometers (e.g. IASI) this is not accurate.

Product volume is small: all instrument 
channels can be used to minimize all 
parameters (T,q,O3,CO,CH4,CO2,clouds,etc.)

Product volume is large:  In practice, a 
spectral subset (10%), spatial subset (5%), and 
clear subset (5%) of the observations is made

Retrieval ProductsRadiance
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AIRS Forecast Improvement
Additional Improvement Using

All 18 AIRS FOV’s
(11 hours total in 6 Days)

Northern Hemisphere
Preliminary

Improved Forecast Prediction
1 in 18 AIRS FOV’s
(6 hours in 6 Days)

Northern Hemisphere
October 2004 *

This AIRS instrument has provided a significant increase in forecast 
improvement in this time range compared to any other single instrument

J. J. LeMarshallLeMarshall, J. Jung, J. , J. Jung, J. DerberDerber, R. , R. TreadonTreadon, S. Lord, M. Goldberg, W. Wolf, H. , S. Lord, M. Goldberg, W. Wolf, H. 
Liu, J. Joiner, J. Liu, J. Joiner, J. WoollenWoollen, R. , R. TodlingTodling, R. , R. GelaroGelaro ““Impact of Atmospheric Infrared Impact of Atmospheric Infrared 

Sounder Observations on Weather ForecastsSounder Observations on Weather Forecasts””, EOS, Transactions, American , EOS, Transactions, American 
Geophysical Union, Vol. 86 No. 11, March 15, 2005 15Geophysical Union, Vol. 86 No. 11, March 15, 2005
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Examples of off-diagonal elements 
in instrument error coviance. 

• In any instrument there are optical, electrical, and processing components that can correlate signals.
• In interferometers, for example, processing includes as step called apodization to make the instrument 

spectral characteristics localized (necessary for efficient radiance computations).   But, apodization
causes a local spectral correlation (a channel is 62% correlated with neighbor (±1 channel), 13% 
correlated with ±2 channels, 1% correlated with ±3 channels, etc.)

• In dispersive instruments each detector array has spectral correlation due to a common electronics 
system.   For example, in AIRS the spectral correlation is a function of the array module:

Therefore, the best use of satellite radiances requires ability to 
characterize ever detail of the instrument and processing.
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Example of Temperature Retrieval 
Error Covariance

1100 mb

100 mb

1 mb

10 mb

• An example of temperature 
retrieval correlation 
(minimum variance method) 
for the AIRS instrument

• Top of atmosphere 
radiances are used to invert 
the radiative transfer 
equation for T(p).

• This results in a correlation 
that is a vertical oscillatory 
function.

1100 mb

Therefore, the use of retrieval products requires knowledge of retrieval 
“averaging kernels” and errors estimates.
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AIRS Science Team:
Algorithm Components

• Phil Rosenkranz (MIT)
– Microwave (MW) radiative transfer algorithm
– Optimal estimation algorithm for T(p), q(p), LIQ(p), MW emissivity(f), Skin 

Temperature
• Larrabee Strow (UMBC)

– Infrared (IR) radiative transfer algorithm
• Larry McMillin (NOAA)

– Local Angle Correction (LAC) algorithm
• Mitch Goldberg (NOAA)

– Eigenvector regression operator for T(p), q(p), O3(p), IR emissivity(υ), and 
Skin Temperature

• Joel Susskind (GSFC) & Chris Barnet
– Cloud Clearing Algorithm
– Physical retrieval using SVD for T(p), q(p), O3(p), Ts, εIR, CTP, Cloud Fraction

• Chris Barnet (NOAA)
– Physical Retrieval (currently using SVD) for CO(p), CH4(p), CO2(p), 

HNO3(p), N2O(p), SO2



19

Constraints and Assumptions for the 
AIRS Science Team Algorithm

• One Granule of AIRS data (6 minutes or 1350 “golf-balls”) must 
be able to processed, end-to-end, using ≤ 10 CPU’s (originally 10 
SGI 250 MHz CPU’s).   That is, one retrieval every 0.266 
seconds.

• Only static data files can be used
– One exception: model surface pressure.
– Cannot use output from model or other instrument data.
– Maximize information coming from AIRS radiances.

• Cloud clearing will be used to “correct” for cloud contamination
in the radiances.
– Amplification of Noise, A,  is a function of scene  0.33 ≤ A < ≈5
– Spectral Correlation of Noise is a function of scene

• IR retrievals must be available for all Earth conditions within the 
assumptions/limitations of cloud clearing.

• Temperature retrievals: 1 K/1-km was the single “success criteria” 
for the NASA AIRS mission.
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Sounding Strategy in Cloudy Scenes:
Co-located Thermal & Microwave (& Imager)

• Sounding is performed 
on 50 km a field of 
regard (FOR).

• FOR is currently 
defined by the size of 
the microwave sounder 
footprint.

• IASI/AMSU has 4 IR 
FOV’s per FOR

• AIRS/AMSU & 
CrIS/ATMS have 9 IR 
FOV’s per FOR.

• ATMS is spatially over-
sampled can emulate 
an AMSU FOV.

AIRS, IASI, and CrIS all 
acquire 324,000 FOR’s per day
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Spatial variability in scenes is used 
to correct radiance for clouds.

• Assumptions,   Rj = (1-αj)Rclr + αj Rcld
– Only variability in AIRS pixels is cloud 

amount, αj
• Reject scenes with excessive surface & 

moisture variability (in the infrared).
– Within FOR (9 AIRS scenes) there is 

variability of cloud amount
• Reject scenes with uniform cloud amount

• We use the microwave radiances and 9 
sets of cloudy infrared radiances to 
determine a set of 4 parameters and 
quality indicators to derive 1 set of 
cloud cleared infrared radiances.

• Roughly 70% of any given day satisfies 
these assumptions.

Image Courtesy of Earth Sciences 
and Image Analysis Laboratory, 
NASA Johnson Space Center
(http://eol.jsc.nasa.gov). STS104-
724-50 on right (July 20, 2001).
Delaware bay is at top and Ocean 
City is right-center part of the 
images.



22

Spatial variability in scenes is used 
to correct radiance for clouds.

• We use a sub-set (≈ 50 chl’s) of computed radiances from the 
microwave state as a clear estimate, Rn= Rn(X) and 9 sets of 
cloudy infrared radiances, Rn,j to determine a set of 4 
parameters, ηj.

• Solve this equation with a constraint that ηj ≤ 4 degrees of 
freedom (cloud types) per FOR

• A small number of parameters, ηj, can remove cloud 
contamination from thousands of channels.
– Does not require a model of clouds and is not sensitive to cloud spectral 

structure (this is contained in radiances, Rn,j)
– Complex cloud systems (multiple level of different cloud types).
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Example of AIRS Cloudy Spectra

Example AIRS spectra at 
right for a scene with 
α=0% clouds (black), 
α=40% clouds (red) and 
α=60% clouds (green).

Can use any channels 
(i.e., avoid window 
regions, water regions) to 
determine extrapolation 
parameters, ηj

Note that cloud clearing 
produces a spectrally 
correlated error

In this 2 FOV example, the cloud clearing 
parameters, ηj, is equal to ½<α>/(αj-<α>)
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Cloud Clearing Dramatically Increases the 
Yield of Products

• AIRS experience:
– Typically, less than 5% of 

AIRS FOV’s (13.5 km) are 
clear.

– Typically, less than 2% of 
AIRS retrieval field of 
regard’s (50 km) are clear.

• Cloud Clearing can   
increase yield to 50-80%.

• Cloud Clearing reduces 
radiance product size by 
1:9 for AIRS and 1:4 for 
IASI.
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Spectral Coverage of Thermal Sounders 
(Example BT’s for AIRS, IASI, & CrIS)

AIRS, 2378
Channels

CrIS
1305

IASI, 8401
Channels

COCH4CO2 O3 CO2
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Instrument Noise, NE∆T at 250 K
(Interferometers Noise Is Apodized)

CO2
CO2CH4 CO
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Brightness Temperature Spectra reveal changes in atmosphere 
from eye to boundary of Tropical Cyclone

Brightness temperature spectra

AIRS observations of tropical storm Isadore
on 22 Sept 2002 @ ~19:12-19:18 UTC

~999 cm-1 radiances
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20-July-2002 Ascending LW_Window

AIRS Spectra from around the Globe
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For a large global ensemble we can 
compute <R> and RRT

Anticorrelated: BLUE

Positive: Correlation: Green →
Yellow → Red

Diagonal is from upper left to 
lower right in this figure

“Checkerboard” pattern results 
from wings of lines begin 
correlated with near neighbor 
cores of lines.

667 cm-1 (stratospheric) is 
anticorrelated with tropospheric
channels.

15  µm band (600-700 cm-1) and 
4.3 µm band (2390 cm-1) are 
correlated (measure same thing)
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Information Content of AIRS: 
Eigenvalues of RRT

Transition from Signal to Noise 
Floor
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AIRS has roughly 90 pieces of 
information in 2378 chl’s
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First 4 Eigenvectors of AIRS 
Radiances: Real & Simulated
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Information content of the AIRS, 
IASI, and CrIS Radiances is the same.
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Statistical Regression Retrievals
(see Goldberg et al. 2003)

• Statistical eigenvector regression uses Je observed 
spectra (on a subset of M “good” channels) to compute 
eigenvectors.   Spectral radiance for scene j, Rn(m),j, can 
then be represented as principal components, Pk,j

• A regression, Ai,k, between a “truth” state parameter i, 
Xi,j, and principal components can be computed.
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Pro’s and Con’s Of Statistical 
Regression Retrievals

Training requires a large number of co-
located “truth” scenes.

Does not require a radiative transfer 
model for training or application.

Very difficult to assess errors in a 
regression retrieval without the use of a 
physical interpretation.

Since clouds are identified as unique 
eigenvectors, a properly trained 
regression tends to “see through” clouds.

The regression answer builds in 
correlations between geophysical 
parameters.   For example, retrieved O3
in biomass regions might really be a 
measurement of CO with a statistical 
correlation between CO and O3.

Since real radiances are used the 
regression implicitly handles all 
systematic instrument calibration issues.   
This is a huge advantage early in a 
mission.

The regression operator does not provide 
any diagnostics or physical interpretation 
of the answer it provides.

Application of eigenvector & regression 
coefficients is VERY fast and for hyper-
spectral instruments it is very accurate.

Con’sPro’s
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